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Abstract-The existence and properties of a free energy function compatible with the second law
of thermodynamics in one-dimensional rate-type semilinear viscoelasticity is analysed. Necessary
and sufficient conditions are given such that a free energy as a function of strain and stress exists
and is unique, that it is a non-negative function and possesses a monotony property with respect to
the equilibrium curve. A bound in energy for the smooth solutions of certain initial and boundary
value problems with respect to the input data is established when the equilibrium curve is a non­
monotonic curve (i.e. the free energy function is a non-convex one). Thus iron-like behaviour, for
instance is also included. An L 2-approach to equilibrium is also discussed.

1. INTRODUCTION

The existence of a free energy function compatible with the second law of thermodynamics
for rate-type constitutive equations has largely been investigated in the literature. References
[1,2] deal with the hypoelastic case and Refs [3,4] with the viscoplastic and viscoelastic
cases. For the elastic-perfectly plastic one-dimensional constitutive equation see Chap. 4,
Section 4 in Ref. [5].

In the quasilinear viscoelastic case, the existence and uniqueness up to a constant of
the free energy function is proved in Ref. [3] under the assumption that the equilibrium
curve is smooth and its slope is always strictly smaller than the instantaneous slope.

For the semilinear case, if the equilibrium curve has always a strictly positive slope, it
is shown in Ref. [4] that this energy function is positive, convex and possesses a monotony
property with respect to the equilibrium curve. By means of the energy function one gives
in Ref. [4] several energy estimates of the smooth solutions of some initial and boundary
value problems.

In this paper we also consider one-dimensional rate-type semilinear viscoelastic consti­
tutive equations. In Section 2we give necessary and sufficient conditions, on the constitutive
functions, for the free energy function to exist (and we construct it), to be non-negative and
to possess a monotony property with respect to the equilibrium curve. We notice that these
conditions allow the equilibrium curve to be continuous only and not necessarily increasing.
These constitutive assumptions are weaker than those of Ref. [4] and more interesting since
they allow us to describe materials, like iron for instance, for which the equilibrium curve
has not always a positive slope (see for instance p. 577 in Ref. [6]), thus the free energy may
be a non-convex function.

In Section 3 we show that all the energetic properties proved in Ref. [4] for the smooth
solutions of some initial and boundary value problems still remain valid under our weaker
constitutive assumptions. These properties are: the total energy at any time remains
bounded by the energy of the initial data plus the energy exchanged by the body with the
external world and the solution is continuously dependent upon the input data. We also
obtain that in the case ofan isolated body problem (i.e. for a body which does not exchange
energy with the external world) there is an asymptotic L 2-approach to equilibrium. This
property suggests (as in Ref. [4]) a rate-type viscoelastic approach to non-linear elasticity.
But, unlike in Ref. [4J, we obtain an L 2-approach of the solutions of a hyperbolic system
(the viscoelastic one) to the solution of a possible non-hyperbolic system (the non-linear
elastic one) since the equilibrium curve has not always a positive slope.
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Fig. I. The constitutive domain ~ (bounded by dotted lines) corresponding to the equilibrium curve
(J = (JR(e), eel = [e I' ezl. For ee [0, ezl the equilibrium curve is chosen here similar to that of iron in

a uniaxial standard test.

We also consider the case when the constitutive domain (in the stress-strain plane) is
bounded and we show that this domain cannot be arbitrarily chosen since it is determined
by the equilibrium curve, and the instantaneous reponse curves (see Section 2 and Fig. I).

2. THE FREE ENERGY FUNCTION AND SOME OF ITS PROPERTIES

Let us consider a rate-type constitutive equation (see Refs [7-9))

q = Ee+G(s,O')

where 0' = O'(t) is the stress, s = set) is the strain and

E::::: const. > 0

G : p) -. R, G Lipschitz continuous on ~

f)::::: {(s,O'R(e)+E(s-e»); (s,e)ElxI}

I £; R an interval containing 0 as an interior point

G = 0 if and only if 0' = 0' R(S)

(1)

(2a)

(2b)

(2c)



where
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(U-O"R(c:»G(c:,O) ~ 0 for any (c:,O")e£j)
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(2d)

(2e)

The curve 0" = 0"R(C:) in the C:-(1 plane is called the equilibrium curve. E is the dynamic
Young's modulus. Assumption (2c) ensures that the constitutive equation, eqn (I), is a
viscoelastic one (unlike in Refs [7-9] where the models are viscoplastic) and condition (2a)
implies that the model is semilinear (Le. with a linear elastic instantaneous response) and
has real acceleration waves.

A pair (e(t), O'(t», te [0, T) is called a smooth process if C:E C1([0, T», c:(t)eI for any
tE [0, T), (c:(0), O'(O»ef!) while O"(t), te [0, T) is the solution ofeqns (1) and (2) for the given
c:(t) and 0"(0), such that (e(l), O'(t» E £j) for any t E [0, T). Then assumption (2d) represents
the necessary and sufficient condition for the equilibrium curve to be stable with respect to
relaxation processes, Le. each constant strain process (c: = eo, 0' = O'(t», t ;;ll 0 starting at
(eo, O'(O»e£j) has infinite duration and approaches O'R in the sense that limO'(t) = O'R(eO)'
This assumption reflects some experimental evidence. 1-«>

The choice ofdomain f!) in relation (2b) (see Fig. I) is based on the following remark:
any process starting in f!) will always remain in £j). The proof of this remark is given at the
end of this section.

The constitutive equation, eqn (I), is said to have a free energy function of strain and
stress, compatible with the second law of thermodynamics if there exists a smooth function
'" = "'(e, 0'), "': f!) --+ R such that

0"8-P~ ;;ll 0

for any process (e(t),O'(t», te [0, T) (see Ref. [I]). Here p > 0 is the mass density in the
reference configuration.

2.1. Existence and uniqueness
We give first the necessary and sufficient conditions on the constitutive functions in

conditions (2) such that the constitutive equations, eqns (I) and (2), admit a free energy
function. Following Ref. [4] the proof is based on the construction of this energy function.

Proposition 1. The constitutive equations, eqns (I) and (2), admit a unique free energy
(modulo a constant) if and only if

(3)

Proof A smooth function"': f!) --+ R is a free energy for the constitutive equations,
eqns (1) and (2), if and only if (see Ref. [3])

(4a)

for any (e,O')ef!)

(4b)

Equation (4a) has the general solution
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(5)

where ¢ is an arbitrary smooth function of argument (J-Ee. On the other hand, under
hypothesis (2d), inequality (4b) is equivalent to

(6)

Now ol/Jjo(J must vanish for (J = (JR(e) since otherwise inequality (6) will be violated.
Thus

(7)

By using eqn (5) in eqn (7) for (J = (JR(e) we obtain

where ¢'(r) == d¢(r)jdr. If we denote

h(e) == (JR(e)-& for any eEl

then eqn (7') becomes

¢'(h(e» = - (JR(e) for any ee I.
E

(7')

(8)

(9)

In order to determine the function ¢(r) from eqn (9) the function h(e) has to be
invertible, i.e.

(10)

When condition (10) holds, ¢ will be the unique solution (modulo a constant) of the
following equation:

¢'(r) = - (JR(h(r» for any reh(I)
E

(11 )

where his the inverse function ofh. According to eqn (11) ¢ is defined on h(I); but according
to the definition of 50 in eqn (2b), for any (e, (J) e50 there must exist an ee I such that
(J-& = h(l) and therefore ¢«(J-&) makes sense in eqn (5) for any (e, (J)e50.

Now, the function l/J in eqn (5) with ¢ given by eqn (11) has also to verify inequality
(6) in order to be a free energy function. Since for any (e, (J) E50 there exists an ee I such
that (J-& = h(l) we have

and, according to eqn (5) we also have
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p at/! =~ +c/J'(u-&) = &+h(f) _ URm = B-l.
au E E E

Then inequality (6) requires

[h(B)-h(f)](B-f) ~ 0 for any B,lE!.
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(12)

Consequently expressions (10) and (12) are the necessary and sufficient conditions for the
existence of a free energy function, Le. a solution of eqns (4a) and (4b) in £1J. By using
notation (8) they are equivalent to condition (3). Moreover, the solution of eqns (4a) and
(4b) is unique (modulo a constant) and we can write it explicitly.

Indeed, according to expressions (10) and (12) h is strictly monotone, therefore

eh(e) = f h(s) ds+ lh(t) h().) d)' for any BEl.

On the other hand from eqns (11) and (8) there results

h(r) = - ~ -c/J'(r)
E

and by substituting eqn (14) into eqn (13) we obtain, if c/J(O) = 0

,1.,( ) = (Ii(T) () d _ uMh(r»
'I' r Jo U R S S 2E'

(13)

(14)

(15)

The free energy function of eqns (1) and (2) for which "'(0,0) = 0 is then given by

where &= h(U-&).

(16)

Q.E.D.

Remark 1. In Ref. [4] the existence of a free energy function is proved under more
restrictive assumptions on the equilibrium curves, Le.

I=R, UREC'(R), u~(e)<E for any eeR. (2')

From now on we assume that relation (3) holds, Le. eqns (I) and (2) admit free energy
functions. We denote by '" that one given by expression (16) and c/J by eqn (15).

2.2. Properties of the free energy function
We study now some properties of the free energy function'" which are important from

both the physical and mathematical point of view. The first property we investigate is the
non-negativeness of t/!. In general the free energy is not required to be a non-negative
function; however, in many cases, it is supposed to be non-negative so it is interesting to
know under what conditions such a property holds. Moreover, a non-negative function c/J
is very useful in studying the solutions of the system of equations which describes the
motion of a body modeled by the constitutive equations, eqns (I) and (2) (see Section 3).

Proposition 2. The function c/J is non-negative on h(I) if and only if
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If 1= R, relation (l7) is equivalent to

fa' oAs) ds ~ 0 for any SER.

(l7)

(17')

Proof According to eqn (15) relation (17) is obviously equivalent to ¢(t) ~ 0 for any
tE h(I).

Let us prove now that for 1= R relation (17) is equivalent to relation (17'). We have
only to prove that relation (17') implies relation (17) since the converse is obvious. Assume
then that relation (17') holds and choose an s* E R. We denote

Then

If l < s* one has, according to inequality (3)

O'R(S)-O'R(S*) > E(s-s*) for any SE [l,s*)

which implies

and therefore relation (17) holds for S*.

If l > s* the proof follows in the same way. Q.E.D.

Remark 2. In general, when I =/; R, relations (17) and (17') are no more equivalent. If,
for instance, 1= [e 10 s21 and 0' = 0'R(S) is such that 0'R(e2) < 0 and S~ 0'R(S) ds = 0 then
relation (17') holds while relation (17) is obviously violated for s = e2'

In particular, if

(18)

then relations (17) and (17') are equivalent on I.

Corollary 1. When 1= R or I=/; R but condition (18) holds then relation (17') is the
necessary and sufficient condition for the free energy function'" to be non-negative. When
I=/; R relation (17) is a sufficient condition for the free energy function'" to be non-negative.

Remark 3. In Ref. [4] the free energy on R 2
_ {O} is proved to be positive under the

assumption that the equilibrium curve is always a strictly increasing function on Rand
satisfies condition (2'), i.e.

O<O'~(s)<E forany eER.

This condition obviously implies relation (17').
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It is interesting to note that in Ref. [4] the slope of the equilibrium curve is required
to be strictly positive while relation (17') requires that only the area defined by the equi­
librium curve be positive for any teR.

We give now a necessary and sufficient condition for'" to possess a monotony property
with respect to the equilibrium curve.

Proposition 3. If we have two functions G;(t,O"), i = 1,2 and two equilibrium curves
0"H;(t), i = 1,2 such that each pair (0"Hi' Gj ), i = 1,2 satisfies conditions (2) and (3) for I = R
then

(19)

if and only if

(20)

where l/J/is the free energy function (16) corresponding to the pair (0"H" G/), i = 1,2.
Proof Let f be such that

Then, according to expressions (lS) and (21)

i'l i'l 1
tPl(r)-tP2(r) = Jo O"HJS) ds- Jo O"Hl(S) ds- 2E[0"~Jel)-0"~l(t2)]

O"H,(e)-O"Hl (e2) = E(e) -e2)'

By a simple calculation we get from expressions (22)

A similar calculation leads to

But, according to condition (3) we have

(21)

(22)

(23)

(24)
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and therefore, from relations (23) and (24) we obtain

Thus ePl(') ~ ePi,) for any ,ER ifand only if inequality (20) holds, which proves the
equivalence of inequalities (19) and (20). Q.E.D.

Remark 4. The monotony property of the free energy function t/J for (I) + (2) + (2') is
proved in Ref. [4] when

0< aR,(e) ~ aRlee) < E for any eeR.

This case is obviously' included in the hypotheses of Proposition 3.
A possible physical interpretation of the monotony property is given in Ref [4]: if a

viscoelastic material characterized by a constitutive equation, eqns (1) and (2), is subject to
a certain thermal process (such as annealing or quenching for instance) that leaves the
Young's modulus E unchanged but changes the function G and the equilibrium curve
according to inequality (20) then we are able to compare the free energies for the two
constitutive equations.

The monotony property may also be used when comparing the free energy t/J to an
Euclidean norm on R 2 (see Section 3).

The constitutive domain ~. We will now justify the choice of the constitutive domain
~ in (2b). We prove first that any process (e(t), aCt»~, t E [0, T) starting in ~, i.e. (e(O),
a(O»E~, will remain in ~ for telO, T). Indeed, let us denote

p(t) = aCt) - &(t).

Then

pet) = G(e(t), aCt»~.

Now, if I = (a, b) then h(/) = (ex, P); for (e(O), a(O» E~ there always exists aT> 0 such
that p(t) e h(!) for t€ (0, T). Suppose that T is such that peT) = 13, pet) E h(l) for t € [0, T).
Then

peT) = (a-aR(e» (T)+h(e(T» = f3

thus

(a - aR(e» (T) = f3 - h(e(T» > 0

and therefore according to (2d) G(e(T), aCT»~ < 0. Then

peT) = G(e(T), aCT»~ < °
and there results peT-0) > peT) = f3 for b > 0 sufficiently small which contradicts the
hypothesis pet) < f3 for t E [0, T).

If I = la, b} then h(/) = [h(b), h(a)} and for any t for which pet) ~ h(a) we have
(a - aR(e» (t) = pet) - h(e(t» ~ h(a) - h(e(r) ~ °which, according to (2d), implies
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p(t) = G(e(t), u(t» ~ O.
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Therefore, p(t) ~ h(a) for any t ~ 0 as p(O) ~ h(a).
In conclusion, if G is defined on a domain f)* :;) ~ the states in f)* which are not in

f) cannot be reached by processes starting at states in ~. Thus, from the mathematical
point of view there is no need to define G outside ~ ; from the practical point of view we
are not able to determine G experimentally outside ~ since the states outside ~ cannot be
reached by processes starting in ~.

Now, it seems quite natural for any state (e, u) reached by a process to possess a free
energy function and, according to expressions (15) and (16) the domain f) is precisely the
set of all states (e, u), eel for which we could prove there exists a free energy function.

3. SOME ENERGY ESTIMATES IN ONE-DIMENSIONAL VISCOELASTICITY

Let us consider the system of partial differential equations describing the motion of a
rate-type semilinear viscoelastic material

ov au
p at - ax = pb

oe ov
---=0
at ax

au oe
at - E at = G(e, u).

(26)

Here e(x, t), u(x, t), v(x, t) are the strain, stress and particle velocity, respectively, p > 0
is the initial mass density, b(x, t) is the body force and to the constitutive equation, eqn
(26)3' we add the constitutive assumptions (2), (3) and (17) (or (17') if1= R) such that eqn
(26)3 admits a unique positive free energy function'" with "'(0,0) = O.

We consider the following problem for system (26)

(e, u, v)(x, 0) = (eo, uo, vo)(x), x E (0, /)

(uv) (0, t) = (uv) (/, t) = 0, t > 0
(27)

where the initial data are such as not to generate acceleration or shock waves at t =0 +.
In the following by (e, u, v) (x, t) we will always denote a smooth solution of problem

(26) and (27).
Now let ($ be any smooth solution of the energy equation, eqn (4a). We define, the

energy ei of the solution (e, u, v) (x, t) of problem (26) and (27) by

ei(t) == ei(e(., t), u(., t), v(., t» =f [i v2 +ptf(e, u)] (x, t) dx, t ~ O. (28)

Then the following energy identity holds

d [I [ o,f ]
d/i(t) = Jo pvb+p au G dx,

Indeed, from eqns (26) and (4a) we have

SA. 23:11-0

t~ O. (29)
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i) (fl ,) (lrr a ill:
- -v' =v-~~ +pvb=~(O'v)-O'--+pvbat 2 ox ax at

a oe (oJ; oJ;)= - (O'v)+pvb- - p- +pE-ax at De 00'

a a~ a~
== - (O'v)+pvb-p- +p-G.ax at 00'

Relation (29) follows now immediately if we integrate with respect to x and take condition
(27)2 into account.

Function (28) corresponding to the free energy function l/J given by expression (16)
will be denoted by e(t) and will be called the total energy of the solution (e, U, v) (x, t). We
recall here that the free energy l/J is that solution of eqn (4a) which also verifies (4b) and
l/J(O,O) = O.

The energies e.j(t) defined by expression (28) have been introduced in Ref. (4] where
the total energy e(t), under assumptions (2') and 11~(e) > 0 for any eE R, is used to establish
several important properties of the smooth solutions of problem (26) and (27). In the
following we prove that some of these properties are still valid when the assumptions of
Ref. [4] are weakened in the sense that they are replaced by relations (3) and (17) (or (17')
if 1= R).

3.1. Bounds in energy and stability
We start with a result which shows how the total energy e(t) may be used to obtain a

bound in L 2 for the solution (e, 0', v) (x, t) of problem (26) and (27).

Proposition 4. If e(O) < 00 and if there exists E 1 = const., °< E 1 < E, such that

(30)

then

~K[J(e(O»+ J2f:(f>b 2(X,S)dXJ2 dsJ forany t~O (31)

where K = J(2E/E 1).

Proof Consider the function ¢ given by expression (15). We prove first that

¢(r) ~ Ar\ A = canst. > 0 for any reh(l) (32)

if and only if there exists E I = canst. with 0 < E 1 < E such that inequality (30) holds and
then

Indeed, this statement follows immediately from expression (15) since

Now, as (i3l/J/i3u)G ~ 0, there results from eqn (29) (written for the total energy e(t))
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( fl )1/2( fl )1/2 ( fl )1/2
e(t) ~ Jo ~V2 dx Jo 2pb2 dx ~ J(e(t» Jo 2pb

2
dx ..
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1 C' ( fl )1 /2
J (e(t» ~ J(e(O» + J2 Jo Jo pb 2(x, s) dx ds for any t ~ O. (33)

Therefore, the square root of the total energy at any time t ~ 0 is bounded from above
by the square root of the total energy of the initial data plus the energy supplied to the
body by the external world during the whole time interval [0, t].

Now, from relations (33) and (28) there results

[
(I 0'2 JI/2 [(I P 2 J1 /2Jo 2E (x, t) dx , Jo 2v (x, t) dx ,

[ fl JI/2 1 f' ( (I )1/2Jo l/>«O'-Ee)(x,t» dx ~ J(e(O» + J2 Jo Jo pb
2
(x,s) dx ds == M(t).

But, according to the above remark, inequalities (30) and (32) are equivalent and

Thus we have

and (31) follows.

Remark 5. If1= R condition (30) is equivalent to

Q.E.D.

The proof is immediate if we use relation (17').
This equivalence is also a direct consequence of the monotony property given by

Proposition 3 when O'R,(e) = O'R(e), O'Rz(e) = Ele for any eeR and l/>I('r) = l/>(r), l/>2(r) =
E 1f

2/[2E(E-E 1)] for any feR.
The upper bound in £2 given by (31), but stated in slightly different terms is obtained

in Ref. [4] under the assumption that there exists an E I = const., 0 < E I < Ewith

0< E 1 ~ O'R(e) for any eeR. (30')

Condition (30') obviously implies inequality (30) for a smooth O'R but inequality (30) is less
restrictive than condition (30') even in the case when 0'Ris smooth (for instance 0'Ris no
longer required to be an increasing function on R).
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We end this subsection by some remarks concerning the continuous dependence of the
solutions of problem (26) and (27) upon the input data. By input data we understand the
initial data (eo, 0" 0, vo) (x) and the body force b(x, I).

Let (e~, O"~, v~) (x), bi(x, I), i = 1,2 be two sets of input data and let (e', O"i, Vi) (x, I),

i = 1,2 be the corresponding solutions of problem (26) and (27). We denote

(e,O",v) (x, I) = (e l -e2,0"1-0"2,v l _v 2)(x,/)

(eo, 0" 0, vo) (x) = (e~ - e5, 0" ~ -115, V& - v5) (x)

b(x, I) = W-b 2
) (x, I)

and require that (CTV) (0, I) = (I1v) (t, t) = 0, t > 0.
Let us also denote

r' (p 0"2 £ )N(t) == N(e(., t), 0"(., I), v(., t)) = Jo 2v2 + 2£ + 2" e2 (x, t) dx for any 1 ~ 0

We give the following known result from the theory of stability for partial differential
equations (see Chap. II, Section II in Ref. [10] for instance).

There exists a constant K > 0 independent of the input data such that

J(N(t)) :s;; {J(N(O)) +I (r ~ b2 dxy2 exp ( - Ks) dS} exp (KI) for any 1 ~ O.

(34)

Relation (34) implies that the solution of problem (26) and (27) is unique and is
continuously dependent on the input data, with respect to the norm

II (e, 11, v)(., ·)11 = supJ(N(t)).
t~ 0

Now suppose the total energy e(t) is "equivalent" to N(t) in the following sense: there
exist two positive constants A j, A 2, A I < A 2, such that

(35)

for any given function (e, 11, v) (x, t) for which e(t) and N(t) make sense. Then obviously any
smooth solution of problem (26) and (27) will be continuously dependent on the input data,
with respect to the total energy.

Proposition 5. Relation (35) holds if and only,if there exist two positive constants £j,

£2' £1 < £2 < £ such that, for any eEl

(36)

Then AI = £1/[2£(£-£1)]' A 2 = £2/[2£(£-£2)]'
If 1= R condition (36) is equivalent to
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(37)

The proof is simple if we take into account the equivalence of inequalities (30) and (32)
proved in Proposition 4.

3.2. Approach to equilibrium
Let us consider now the case when

G(t:,U) = -kO(U-UR(t:» for any (s,u)e.@

k o = const. > O.

For this particular form of the function G it is proved in Ref. [4] that, if

1= R, uReC1(R) and 0 < UR(t:) < E for any seR

then

(t (I Ee(O)
Jo Jo [u(X,S)-UR(S(X,S)W dx ds:E;;~, t> 0

(38)

(39)

for the solution (s, u, v) (x, t) of an isolated body problem, Le. problem (26) and (27) with
b = O. Therefore, when k o -+ 00, relation (39) implies an L2-approach to equilibrium for
the solution of an isolated body problem.

We show here that a similar result may be obtained even when UR is no longer an
increasing function. Such a result may be useful because system (26) is always hyperbolic
while the "equilibrium system" given by eqns (26)1,2 and the constitutive equation (J = (JR(S)
(Le. the non-linear elastic system) may loose its hyperbolic character in this case. However,
we stiJI obtain an L 2-approach of the solutions of a hyperbolic system to the solution of a
non-hyperbolic system.

Proposition 6. Let G be given by expression (38) and let b = O. If there exists a constant
B> 0 such that

then

[, [I e(O)
Jo Jo [(J(x, s) - (JR(S(X, s»F dx ds :E;; koB for any t > O.

Proof We prove first that inequality (40) is equivalent to

(40)

(41)

(42)

Indeed, there exists an eel such that (J-& =h(f); then (see the proof to Proposition 1)
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and therefore

Let us denote

We have
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(43)

But, by using relations (43)

thus

(44)

Relation (44) proves the equivalence of inequalities (40) and (42) since oljJ/oa and a-aR(e)
have always the same sign and vanish simultaneously (see relation (6».

Now, by using (42) we may write (29) (for ej = e)

and therefore

with

[, rl 1 e(O)
Jo Jo [a(x, s) -aR(e(x,s»p dx ds ~ - koB [e(t) -e(O)] ~ koB'

Remark 6. If we consider

G(e,a) = -k(e,a)(a-aR(e» for any (e,a)E£i2!

Q.E.D.

k(e,a) > k o = const. > 0 for any (e,a)E£i2!

Proposition 6 still holds. The proof is essentially the same.
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3.3. Additional comments and concluding remarks
Let us introduce the equilibrium energy function of the viscoelastic model, eqns (l)

and (2), defined by (see expression (16) where s = h«(1R(e)-Ee) = h(h(e» = e)

(45)

and the instantaneous energy function defined by

(46)

We note that 1/1R(e) is exactly the strain-energy function corresponding to the non-linear
elastic constitutive equation (1 = (1R(e) while I/IJ(e) is the strain-energy function cor­
responding to the linear elastic constitutive equation (1 = £e.

In terms of the free energy function I/I(e, (1) (given by expression (16», the equilibrium
energy function 1/1R(e) and of the instantaneous energy function 1/1I(e), most of the results
obtained in Sections 2 and 3 can also be described as follows.

(a) For a continuous equilibrium curve (1 = (1R(e) there is a unique free energy function
I/I(e, (f) of the constitutive equation, eqns (1) and (2), if and only if the slope of the
straight line connecting any two points on the equilibrium curve is bounded from above by
instantaneous Young's modulus E (Proposition 1, condition (3». If the slope ofthe straight
line connecting any two points on the equilibrium curve is also bounded from below by a
(not necessarily positive) constant we obtain a viscoelastic approach (in L 2 sense) to non­
linear elasticity (in case of an isolated body problem) (Proposition 6, condition (40».

(b) The free energy function is non-negative at any point P = (e, (f) e 9J if the instan­
taneous energy function at the strain (1R(e)/E (the area OPIPJO in Fig. 1) does not exceed the
equilibrium energy function at the strain e (the area OPRPRO in Fig. 1) (Proposition 2,
condition (17». When the equilibrium curve is defined on the whole real line we have
I/I(e,(f) ~ 0 on 9J if and only ifI/lR(e) ~ 0 on R (Proposition 2, condition (17'».

(c) The monotony property (Proposition 3) states that the free energy functions for
two viscoelastic models of type (1) and (2) with the same dynamic Young's modulus E are
ordered if and only if the corresponding equilibrium energy functions are ordered in the
same way.

(d) In the case when the equilibrium curve is defined on the whole real line, the solutions
of the initial boundary value problem (26) and (27) are bounded (in L ~ if there exists a
positive constant E 1 < E such that the equilibrium energy function is bounded from below
by the strain-energy function of the linear constitutive equation (1 = E Ie (Proposition 4 and
Remark 5). If the equilibrium energy function is also bounded from above by the strain­
energy function of a linear constitutive equation (f = E2e where 0 < E 1 < E2 < E then
the solutions of problem (26) and (27) are continuously dependent on the input data
(Proposition 5).

(e) All the above conditions do not require the equilibrium function (fR(e) to be an
increasing function and therefore the free energy function I/I(e, (f) may be nonconvex.
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